
PyPTO：Tile 编程与白盒优化

冯思远 上海创智学院助理教授

算力 与访 存的 鸿沟 ：难 以逾 越的 “内 存墙 ”

GPU 型号 V100 A100 H100 H200 B200

显存容量 32 GB 80 GB 80 GB 144 GB 192 GB

bf16 算力(TFLOPs) 125 312 989 989 2250

显存带宽 (TB/s) 0.9 2.0 3.25 4.8 8.0

算力提升 1x 2.5x 7.9x 7.9x 18x

访存提升 1x 2.2x 3.6x 5.3x 8.9x

原始 算力 的提 升速 度远 超过 内存 带宽 的提 升速 度

算力 与访 存的 鸿沟 ：难 以逾 越的 “内 存 墙”

GPU 型号 V100 A100 H100 H200 B200

显存容量 32 GB 80 GB 80 GB 144 GB 192 GB

bf16 算力(TFLOPs) 125 312 989 989 2250

显存带宽 (TB/s) 0.9 2.0 3.25 4.8 8.0

算力提升 1x 2.5x 7.9x 7.9x 18x

访存提升 1x 2.2x 3.6x 5.3x 8.9x

访存特性 N/A cp.async TMA, Warp Specialize TMEM

原始 算力 的提 升速 度远 超过 内存 带宽 的提 升速 度

增加 硬件 和软 件 复杂 度 ，大 幅 提高 编程 门槛

Ti le编程 ：以 块为 单位 ，屏 蔽细 粒度 细节

Tensor

完 整 输 入 输 出 ， 计 算 方 式 与 硬 件 无 关

难 以 结 合 硬 件 特 性 进 行 优 化

Element

单 个 输 入 输 出 元 素 ， 计 算 方 式 与 硬 件 高 度 绑 定

需 要 完 整 考 虑 硬 件 内 存 层 级 、 异 步 单 元 等 细 节

Tile

切 分 后 的 块 状 输 入 输 出 ， 计 算 方 式 与 硬 件 部 分 相 关

通 常 映 射 到 硬 件 的 单 一 核 心 ， 需 要 考 虑 SRAM 优 化

Ti le编程 ：以 块为 单位 ，屏 蔽细 粒度 细节

Tensor

完 整 输 入 输 出 ， 计 算 方 式 与 硬 件 无 关

难 以 结 合 硬 件 特 性 进 行 优 化

Element

单 个 输 入 输 出 元 素 ， 计 算 方 式 与 硬 件 高 度 绑 定

需 要 完 整 考 虑 硬 件 内 存 层 级 、 异 步 单 元 等 细 节

Tile

切 分 后 的 块 状 输 入 输 出 ， 计 算 方 式 与 硬 件 部 分 相 关

通 常 映 射 到 硬 件 的 单 一 核 心 ， 需 要 考 虑 SRAM 优 化

Ti le编程 ：以 块为 单位 ，屏 蔽细 粒度 细节

Tensor

完 整 输 入 输 出 ， 计 算 方 式 与 硬 件 无 关

难 以 结 合 硬 件 特 性 进 行 优 化

Element

单 个 输 入 输 出 元 素 ， 计 算 方 式 与 硬 件 高 度 绑 定

需 要 完 整 考 虑 硬 件 内 存 层 级 、 异 步 单 元 等 细 节

Tile

切 分 后 的 块 状 输 入 输 出 ， 计 算 方 式 与 硬 件 部 分 相 关

通 常 映 射 到 硬 件 的 单 一 核 心 ， 需 要 考 虑 SRAM 优 化

Ti le编程 ：以 块为 单位 ，屏 蔽细 粒度 细节

Tensor

完 整 输 入 输 出 ， 计 算 方 式 与 硬 件 无 关

难 以 结 合 硬 件 特 性 进 行 优 化

Element

单 个 输 入 输 出 元 素 ， 计 算 方 式 与 硬 件 高 度 绑 定

需 要 完 整 考 虑 硬 件 内 存 层 级 、 异 步 单 元 等 细 节

Tile

切 分 后 的 块 状 输 入 输 出 ， 计 算 方 式 与 硬 件 部 分 相 关

通 常 映 射 到 硬 件 的 单 一 核 心 ， 需 要 考 虑 SRAM 优 化

Ti le编程 ：以 块为 单位 ，屏 蔽细 粒度 细节

Tensor

完 整 输 入 输 出 ， 计 算 方 式 与 硬 件 无 关

难 以 结 合 硬 件 特 性 进 行 优 化

Element

单 个 输 入 输 出 元 素 ， 计 算 方 式 与 硬 件 高 度 绑 定

需 要 完 整 考 虑 硬 件 内 存 层 级 、 异 步 单 元 等 细 节

Tile

切 分 后 的 块 状 输 入 输 出 ， 计 算 方 式 与 硬 件 部 分 相 关

通 常 映 射 到 硬 件 的 单 一 核 心 ， 需 要 考 虑 SRAM 优 化

生态 破局 – Triton：在 Python 中释 放 GPU 算力

@triton.jit

def add_kernel(

x_ptr, # *Pointer* to first input vector.

y_ptr, # *Pointer* to second input vector.

output_ptr, # *Pointer* to output vector.

n_elements, # Size of the vector.

BLOCK_SIZE: tl.constexpr,

):

pid = tl.program_id()

block_start = pid * BLOCK_SIZE

offsets = block_start + tl.arange(0, BLOCK_SIZE)

mask = offsets < n_elements

x = tl.load(x_ptr + offsets, mask=mask)

y = tl.load(y_ptr + offsets, mask=mask)

output = x + y

tl.store(output_ptr + offsets, output, mask=mask)

以 Tile 为 核 心 的 编 程 范 式

以 Python 为 前 端 的 编 程 语 言

屏 蔽 了 内 存 层 级 和 指 令 细 节

开 发 者 专 注 于 快 速 的 算 法 迭 代

多层 优化 – TileLang：融 合专 家经 验的 Tile 编程

多 层 级 编 程 接 口

混 合 了 T i l e 编 程 和 S I M T 编 程

给 专 家 提 供 了 细 粒 度 的 优 化 接 口

极 致 性 能 和 更 灵 活 的 编 程 范 式

对 普 通 开 发 者 不 友 好

Beginner Developer Expert

Program

Hardware Specific Executable/Runtime

Tile program

Hardware independent

Program Program

Source Code (C/CUDA/HIP/LLVM/...)

Tile Program with Tile Library

Hardware Aware Programming
Explicit Memory Allocation
Tile Library: Copy, GEMM, Reduce ...

Tile Program with Thread Primitives

PyCUDA Like
Programming IRModule

Source Code

Nvidia GPUs AMD GPUS …

lo
w

e
r

lo
w

e
r

硬件 原生 – CuTi le ：跨 代兼 容的 Ti le 原生 指令 集

TensorRT, PyTorch, JAX

cuDNN / cuDNN-python

cuBLAS / nvmath-python

cuTile

Tile lR

CUTLASS

CUDA C++

NVVM / LLVM

PTX

SIMT Path Tile Path

PTX

Tile lR
GPU

由于硬件迭代

难以跨代兼容

屏蔽部分特性

实现跨代兼容

PyPTO 融合 算子 开发 框架

PyPTO

Tile 编程

以 Tile 为粒度编程，
屏蔽不必要的优化细节。

跨代兼容

通过底层 Tile 指令集，
实现指令集跨代兼容。

人机协作

充分发挥专家经验，
编译流程白盒化。

Python 原生

提供 Python 原生接口，
降低用户开发门槛。

PyPTO：Python 原生的 Tile 编程语言

通过 frontend.jit 装饰器构建PyPTO 函数

原生 Tensor 输入输出

类似 PyTorch 的语法 构造 Tensor Graph

原生函数调用，且原生支持 torch Tensor

通 过 编 译 配 置 参 数 控 制 编 译 优 化

@pypto.frontend.jit

def test_softmax(

input: pypto.Tensor((M, N), pypto.DT_FP32),

) -> pypto.Tensor((M, N), pypto.DT_FP32):

pypto.set_vec_tile_shapes(32, 32)

rowmax = pypto.amax(input, -1, True)

sub_res = pypto.sub(input, rowmax)

exp_res = pypto.exp(sub_res)

esum = pypto.sum(exp_res, -1, True)

output = pypto.div(exp_res, esum)

return output

def main():

x = torch.randn((M, N), dtype=torch.float32)

output = test_softmax(x)

PyPTO：Python 原生的 Tile 编程语言

通过 frontend.jit 装饰器构建PyPTO 函数

类似 PyTorch 的语法 构造 Tensor Graph

原生函数调用，且原生支持 torch Tensor

原生 Tensor 输入输出

通 过 编 译 配 置 参 数 控 制 编 译 优 化

@pypto.frontend.jit

def test_softmax(

input: pypto.Tensor((M, N), pypto.DT_FP32),

) -> pypto.Tensor((M, N), pypto.DT_FP32):

pypto.set_vec_tile_shapes(32, 32)

rowmax = pypto.amax(input, -1, True)

sub_res = pypto.sub(input, rowmax)

exp_res = pypto.exp(sub_res)

esum = pypto.sum(exp_res, -1, True)

output = pypto.div(exp_res, esum)

return output

def main():

x = torch.randn((M, N), dtype=torch.float32)

output = test_softmax(x)

PyPTO：Python 原生的 Tile 编程语言

通过 frontend.jit 装饰器构建PyPTO 函数

类似 PyTorch 的语法 构造 Tensor Graph

原生函数调用，且原生支持 torch Tensor

原生 Tensor 输入输出

通 过 编 译 配 置 参 数 控 制 编 译 优 化

@pypto.frontend.jit

def test_softmax(

input: pypto.Tensor((M, N), pypto.DT_FP32),

) -> pypto.Tensor((M, N), pypto.DT_FP32):

pypto.set_vec_tile_shapes(32, 32)

rowmax = pypto.amax(input, -1, True)

sub_res = pypto.sub(input, rowmax)

exp_res = pypto.exp(sub_res)

esum = pypto.sum(exp_res, -1, True)

output = pypto.div(exp_res, esum)

return output

def main():

x = torch.randn((M, N), dtype=torch.float32)

output = test_softmax(x)

PyPTO：Python 原生的 Tile 编程语言

通过 frontend.jit 装饰器构建PyPTO 函数

原生 Tensor 输入输出

类似 PyTorch 的语法 构造 Tensor Graph

通 过 编 译 配 置 参 数 控 制 编 译 优 化

原生函数调用，且原生支持 torch Tensor

@pypto.frontend.jit

def test_softmax(

input: pypto.Tensor((M, N), pypto.DT_FP32),

) -> pypto.Tensor((M, N), pypto.DT_FP32):

pypto.set_vec_tile_shapes(32, 32)

rowmax = pypto.amax(input, -1, True)

sub_res = pypto.sub(input, rowmax)

exp_res = pypto.exp(sub_res)

esum = pypto.sum(exp_res, -1, True)

output = pypto.div(exp_res, esum)

return output

def main():

x = torch.randn((M, N), dtype=torch.float32)

output = test_softmax(x)

PyPTO：Python 原生的 Tile 编程语言

通过 frontend.jit 装饰器构建PyPTO 函数

原生 Tensor 输入输出

类似 PyTorch 的语法 构造 Tensor Graph

原生函数调用，且原生支持 torch Tensor

通 过 编 译 配 置 参 数 控 制 编 译 优 化

@pypto.frontend.jit

def test_softmax(

input: pypto.Tensor((M, N), pypto.DT_FP32),

) -> pypto.Tensor((M, N), pypto.DT_FP32):

pypto.set_vec_tile_shapes(32, 32)

rowmax = pypto.amax(input, -1, True)

sub_res = pypto.sub(input, rowmax)

exp_res = pypto.exp(sub_res)

esum = pypto.sum(exp_res, -1, True)

output = pypto.div(exp_res, esum)

return output

def main():

x = torch.randn((M, N), dtype=torch.float32)

output = test_softmax(x)

PyPTO：Python 原生的 Tile 编程语言

通过 frontend.jit 装饰器构建PyPTO 函数

原生 Tensor 输入输出

类似 PyTorch 的语法 构造 Tensor Graph

原生函数调用，且原生支持 torch Tensor

通 过 编 译 配 置 参 数 控 制 编 译 优 化

@pypto.frontend.jit

def test_softmax(

input: pypto.Tensor((M, N), pypto.DT_FP32),

) -> pypto.Tensor((M, N), pypto.DT_FP32):

pypto.set_vec_tile_shapes(32, 32)

rowmax = pypto.amax(input, -1, True)

sub_res = pypto.sub(input, rowmax)

exp_res = pypto.exp(sub_res)

esum = pypto.sum(exp_res, -1, True)

output = pypto.div(exp_res, esum)

return output

def main():

x = torch.randn((M, N), dtype=torch.float32)

output = test_softmax(x)

PyPTO：Python 原生的 Tile 编程语言

@pypto.frontend.jit

def test_softmax(

input: pypto.Tensor((M, N), pypto.DT_FP32),

) -> pypto.Tensor((M, N), pypto.DT_FP32):

pypto.set_vec_tile_shapes(32, 32)

rowmax = pypto.amax(input, -1, True)

sub_res = pypto.sub(input, rowmax)

exp_res = pypto.exp(sub_res)

esum = pypto.sum(exp_res, -1, True)

output = pypto.div(exp_res, esum)

return output

def main():

x = torch.randn((M, N), dtype=torch.float32)

output = test_softmax(x)

通过 frontend.jit 装饰器构建PyPTO 函数

原生 Tensor 输入输出

类似 PyTorch 的语法 构造 Tensor Graph

原生函数调用，且原生支持 torch Tensor

通 过 编 译 配 置 参 数 控 制 编 译 优 化

PTO 虚拟 指令 集

@pypto.frontend.jit

def test_softmax(

input: pypto.Tensor((M, N), pypto.DT_FP32),

) -> pypto.Tensor((M, N), pypto.DT_FP32):

pypto.set_vec_tile_shapes(32, 32)

rowmax = pypto.amax(input, -1, True)

sub_res = pypto.sub(input, rowmax)

exp_res = pypto.exp(sub_res)

esum = pypto.sum(exp_res, -1, True)

output = pypto.div(exp_res, esum)

return output

// Load

TLoad(ubTensor_0, gmTensor_1, …);

set_flag(PIPE_MTE2, PIPE_V, EVENT_ID0);

// Compute

wait_flag(PIPE_MTE2, PIPE_V, EVENT_ID0);

TPairMax(ubTensor_2, ubTensor_0, ubTensor_1);

TSub(ubTensor_3, ubTensor_0, ubTensor_2);

TExp(ubTensor_3, ubTensor_3);

…

set_flag(PIPE_V, PIPE_MTE3, EVENT_ID0);

// Write back

wait_flag(PIPE_V, PIPE_MTE3, EVENT_ID0);

TStore(gmTensor, ubTensor, …);

注：生成 PTO 指令代码仅作示例

编 译

用户 Python 代码 底层 PTO 虚拟指令集

跨代兼容的 Tile 虚拟指令集

PTO 虚拟指令集通过 Tile 的抽象，使其指令与硬件实现解耦，实现跨代兼容

PyPTO 白盒编译

Tensor Graph

用户配置Tile 切分

Tile Graph

Block 切分

Block Graph

核内SRAM
约束检查

PTO Instruction
MPMD
运行时

泳道图

性能调优

No

Yes

黑盒编译

?
High-level

Code

Hardware

Code

传统编译器内部过程不可见，专家难以介入优化 PyPTO 将编译过程透明化，允许用户在关键环节直接参与优化

PyPTO: 白盒 编译 与人 机协 同

Human-in-the-Loop 闭环 调优

通过可视化工具和可配置参数 ，用户可以直接观察、 分析并控制编译优化过程，从而实现极致性能

修改配置定位问题

性能分析

用户配置：Tile Config

pypto.set_vec_tile_shapes(64, 64)

pypto.set_cube_tile_shapes(
[16, 16], [64, 64], [64, 64]

)

调优结果：泳道图 编译优化：MPMD 任务图

AI Core 0

AI Core 1

AI Core 2

AI Core 3

AI Core 4

Future: Agent-in-the-Loop 闭环 调优

通过结构化性能分析工具和可配置参数 ，AI Agent 可以直接闭环分析、优化程序

修改配置定位问题

性能分析

用户配置：Tile Config

pypto.set_vec_tile_shapes(64, 64)

pypto.set_cube_tile_shapes(
[16, 16], [64, 64], [64, 64]

)

调优结果：泳道图 编译优化：MPMD 任务图

AI Core 0

AI Core 1

AI Core 2

AI Core 3

AI Core 4

基于 白盒 编译 的 Mega-Kernel

算 子 数 量

26 4
Ascend C PyPTO

总 代 码 行 数 56x 缩 减

57.8k 1.03k
Ascend C PyPTO

DeepSeek R1 推理实例，达成主线 0.9x-1.0x 性能

DeepSeek Layer

Attention -

Worker
FFN - WorkerDispatch Combine

Attention -

Worker
FFN - WorkerDispatch Combine

PyPTO 融合 算子 开发 框架

PyPTO

Tile 编程

以 Tile 为粒度编程，
屏蔽不必要的优化细节。

跨代兼容

通过底层 Tile 指令集，
实现指令集跨代兼容。

人机协作

充分发挥专家经验，
编译流程白盒化。

Python 原生

提供 Python 原生接口，
降低用户开发门槛。

Roadmap

底座标准化
Standardization

开发体验深度化
Empowerment

价值驱动共建
Ecosystem

完善基础功能，建立工业级稳定性

• Python 前端与 IR

• 编译系统基础

• 运行时与兼容性

• 开发工具链

开放深层编程接口，支持复杂场景

• 分层编程接口

• 增量编译、协同优化

• 通信-计算融合

• 智能化工具链

拓展领域边界，构筑繁荣开源生态

• 全场景执行能力

• 泛 AI 计算场景

• 社区共建生态体系

• AI 辅助算子开发调优

Py PTO 将在近期全量开源，敬请期待

THANKS

	主KV
	Slide 1

	内容页
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

	结束页
	Slide 27

